Guide to machining plastic parts

Specifications to consider when machining high-performing thermoplastic parts

With more than 80 years of experience, 30 branch offices in 20 countries, and a team of technical service experts, engineers, and application development managers, Mitsubishi Chemical Group is the global leader for researching, developing, and manufacturing highperformance engineered polymer materials. Our products make the world a safer place by providing solutions across all industries — Aerospace, Renewable Energy, Chemical / Oil & Gas Processing, Food Processing & Packaging, Construction / Heavy Equipment, Linings, Medical / Life Sciences, Semiconductor, Transportation / rail.

Table of contents

01	MACHINING PLASTICS VS. METALS	4
02	PLASTIC MACHINING PROCESSES	6
	Threading and tapping	
	Milling	
	Sawing	
	Drilling and boring	
	Turning	
03	ADDITIONAL TREATMENTS	12
	Coolants	
	Annealing	
04	TROUBLESHOOTING GUIDELINES	15
	Drilling troubleshooting	
	Turning and boring troubleshooting	
	Cutting off troubleshooting	
05	APPENDIX	18
	Machinability	
	Conversions	

Machining plastics vs. metals

Machining plastics vs. metals

For their mechanical, chemical, and lightweight properties, plastics are increasingly replacing metals in a wide range of engineering applications. Many of the same machining methods used to fabricate metal parts are also used for plastics; however, best practices for machining plastics differ considerably.

Plastics exhibit a number of properties that influence machining procedures, including:

- Thermal expansion of plastics is up to 10 times greater than that of metals
- Plastics lose heat more slowly than metals, increasing the risk of localized overheating
- Softening and melting temperatures of plastics are much lower than metals
- Plastics are much more elastic than metals

From material selection to proper tooling, from feed rates to stabilizing methods, part producers must weigh a range of factors in order to achieve good results when machining plastics. The following guidelines cover the most common plastic machining methods and provide useful tips and data for working with engineering polymers from Mitsubishi Chemical Group.

Plastic machining processes

Plastic machining processes

This section covers the most common methods of machining plastic engineering components, providing guidelines and tips to achieve the best results with each.

Proper machining is crucial to achieving part dimensions and performance. Improper machining

Threading and tapping

What is threading? What is tapping?

Tapping and threading are two machining methods used to produce screw threads. Threading is the process of using a die tool to carve external threads, where tapping is the process of using a tap tool to create threads on the inside of a drilled hole.

Threading and tapping with plastic vs. metal

A primary consideration when threading and tapping plastic is that plastics are more notch-sensitive than metals. Some polymer materials may tear during threading, especially in fine pitch procedures.

Threading tips for plastic

Threading plastic should be done by single point using a carbide insert, taking four to five 0.001" passes at the end. Coolant usage is suggested.

can create stress within the finished

mechanical properties and risking

Common causes of machined-in

part, negatively impacting its

premature part failure.

· Using dull or improperly

designed tooling

stress include:

Tapping tips for plastic

When tapping plastic, use the specified drill with a two-flute tap. Keep the tap clean of chip build-up. Use of a coolant during tapping is also suggested.

- Excessive heat generated from inappropriate speeds and feed rates
- Machining away large volumes of material, usually from one side of the stock shape

Milling

What is milling?

Milling is a machining method that applies a high-speed cylindrical cutting tool to a stationary plastic shape, moving the cutter on an axis to subtract from the shape in different directions. Computerized numerical control (CNC) milling increases the accuracy and efficiency of plastic milling.

Milling plastic vs. metal

When milling plastic, it is crucial to properly stabilize the part on the worktable and minimize vibrations from the high-speed cutting tool – these may result in chatter marks and decreased accuracy due to the shape wandering.

Milling tips for plastic

- Climb milling, also known as down milling, is recommended over conventional milling.
- Sufficient fixturing on the mill bed allows fast table travel and high spindle speeds.
- The shape should not be fixed too tightly, however, as it may deform or spring
- When face milling, use positive geometry cutter bodies.

End milling/slotting guidelines

MATERIAL TYPES	RECOMMENDED CARBIDE	DEPTH OF CUT	SPEED (FT./MIN)	FEED (IN./TOOTH)
TIVAR® UHMW-PE, Nylatron® / Ertalon® PA6, Acetron® / Ertacetal® POM-H, Proteus® PP, Altron™ PC, Sultron™ PC, Sultron® PSU & PPSU, Ertalyte® PET-P, Ketron® PEEK, Techtron® PEEK, Fluorosint® PTFE, Duratron® PEI, Duratron® PAI, Duratron® PI	1/4", 1/2", 3/4", 1", 2" 1/4", 1/2", 3/4"	0.250	270-450 300-500	0.002, 0.003, 0.005
Duratron® PBI	1/4", 1/2", 3/4", 1", 2" 1/4", 1/2", 3/4"	0.015	250-350	0.002
Fluorosint® MT-01 PTFE	*Co	ntact our Technica	I Services team for	advice

Face milling guidelines (C-2, carbide tool)

MATERIAL TYPES	RECOMMENDED CARBIDE	DEPTH OF CUT	SPEED (FT./MIN)	FEED (IN./TOOTH)
TIVAR® UHMW-PE, Nylatron® / Ertalon® PA6, Acetron® / Ertacetal® POM-H, Proteus® PP, Altron™ PC, Sultron® PSU & PPSU, Duratron® PEI		0.150	1300-1500 1500-2000	0.020
Ertalyte® PET-P	1/4", 1/2", 3/4", 1", 2" 1/4", 1/2", 3/4"	0.250 0.050	270-450 300-500	0.002, 0.003, 0.005 0.008, 0.001, 0.002, 0.004
Ketron® PEEK		0.150 0.060	500-750	0.020 0.005
Fluorosint® PTFE		0.150 0.060	500-700 550-750	0.010 0.005
Techtron® PPS		0.150 0.060	1300-1500 1500-2000	0.020 0.005
Duratron® PAI & PI		0.035	500-800	00.6-0.35
Duratron® PBI	1/4", 1/2", 3/4", 1", 2" 1/4", 1/2", 3/4"	0.015	250-350	0.002
Fluorosint® MT-01 PTFE	*Co	ontact our Technica	I Services team for	advice

Sawing

What is sawing?

Sawing is a machining method that involves cutting a material into multiple pieces using a bandsaw, table saw, or other specialized equipment.

Sawing plastic vs. metal

The primary difference between sawing plastic vs. metal is that the heat generated by the saw blade can negatively impact the plastic parts due to lower softening and melting temperatures. It is crucial to account for the speed of the blade, the thermal properties of the material, and the thickness of the shape when sawing plastic.

Tips for selecting a saw tool

- Band saws are versatile and perform well for straight, continuous curves, and irregular cuts.
- Table saws are convenient for straight cuts and can be used to cut multiple thicknesses and thicker cross sections – up to 4" with adequate horsepower.

Tips for selecting a saw blade

- Rip and combination blades with a 0° tooth rake and 3° to 10° tooth set are best for general sawing in order to reduce frictional heat.
- Hollow ground circular saw blades without set will yield smooth cuts up to 3/4" thickness.
- Tungsten carbide blades wear well and provide optimum surface finishes.

MATERIAL TYPES	MATERIAL THICKNESS	BAND SPEEDS FT./MIN	PITCH TEETH/IN.	TOOTH FORM
TIVAR® UHMW-PE.	<.5"	3000	10-14	Precision
Ertalon® / Nylatron® PA6,	.5"-1.0"	2500	6	
Ertacetal® / Acetron® POM-H, Ertalvte® PET-P	1.0"-3.0"	2000	3	Buttress
	>3.0"	1500	3	2000000
Protouo@ PD	<.5"	4000	10-14	Dragician
Altron™ PC,	.5"-1.0"	3500	6	Precision
Sultron® PSU & PPSU, Duratron® PEL	1.0"-3.0"	3000	3	Buttress
	>3.0"	2500	3	Dutiless
	<.5"	4000	8-14	
	.5"-1.0"	3500	6-8	Precision
Ketron® PEEK	1.0"-3.0"	3000	3	Buttroco
	>3.0"	2500	3	Duttiess
	<.5"	3000	8-14	
Fluorosint® PTFE,	.5"-1.0"	2500	6-8	Precision
Techtron® PPS	1.0"-3.0"	2000	3	Puttroco
	>3.0"	1500	3	Duttiess
	<.5"	5000	8-14	
	.5"-1.0"	4300	6-8	Precision
Duratron® PAL& PL	1.0"-3.0"	3500	3	Buttroop
	>3.0"	3000	3	Duttiess
Duratron® PBI	<.375"-1.0"	3000	10	Precision
	1.0"-2.0"	1500	10	Buttress
Fluorosint® MT-01 PTFE	*Co	ntact our Technica	Services team for	advice

Sawing guidelines (C-2, carbide tool)

Drilling and boring

What is drilling? What is boring?

Drilling is a machining method that creates cylindrical holes and throughholes by means of a pointed helical tool. Boring is a secondary process for enlarging or finishing drilled holes.

Drilling and boring plastic vs. metal

The heat insulating characteristics of plastics require consideration during drilling operations, especially when the depth of the hole is greater than twice its diameter. Excessive heat build-up may result in chipping, rough surfaces, and inadequate tolerances.

Drilling tips for plastic

For small diameter holes (1/32" to 1")

- High-speed steel twist drills are generally sufficient.
- Frequent pullout (peck drilling) is suggested to improve swarf removal.
- A slow spiral (low helix) drill will allow for better swarf removal.

For large diameter holes (1" and greater)

- A slow spiral (low helix) drill or general-purpose drill bit ground to a 118° point angle with 9° to 15° lip clearance is recommended. The lip rake should be ground (dubbed off) and the web thinned.
- Avoid hand feeding drill grabbing can result in microcracks.
- It is generally best to drill a pilot hole (maximum 1/2" diameter) using 600 to 1,000 rpm and a positive feed of 0.005" to 0.015" per revolution.
- Secondary drilling at 400 to 500 rpm at 0.008" to 0.020" per revolution is required to expand the hole to larger diameters.

For especially notch-sensitive materials (such as Ertalyte® PET-P and glass reinforced materials)

 A two-step process involving both drilling and boring minimizes heat build-up and reduces the risk of cracking.

- First, drill a 1" diameter hole using an insert drill at 500 to 800 rpm with a feed rate of 0.005" to 0.015" per revolution.
- Next, bore the hole to final dimensions using a boring bar with carbide insert with 0.015" to 0.030" radii at 500 to 1,000 rpm and a feed rate of 0.005" to 0.010" per revolution.

Drilling guidelines (C-2, carbide tool)

MATERIAL TYPES	NOMINAL HOLE DIAMETER	FEED IN./REV.
TIVAR® UHMW-PE, Ertalon® / Nylatron® PA6, Ertacetal® / Acetron® POM-H	1/16" to 1/4" 1/2" to 3/4" 1" to >2"	.007015 .015025 .020050
Proteus® PP, Altron™ PC, Sultron® PSU & PPSU, Duratron® PEI	1/16" to 1/4" 1/2" to 3/4" 1" to >2"	.007015 .015025 .020050
Ertalyte® PET-P	1/16", 1/8", 1/4" 1/2", 3/4" 1", 1-1/2", 2", >2"	.002005 .015025 .020050
Ketron® PEEK, Fluorosint® PTFE, Techtron® PPS, Duratron® PAI & PBI	1/16", 1/8", 1/4" 1/2", 3/4" 1", 1-1/2", 2", >2	.007015 .015025 .020050
Duratron® PBI	1/2" or larger	.015025
Fluorosint® MT-01 PTFE	*Contact our Technical Services	team for advice

Turning

What is turning?

Turning is a machining process in which a plastic shape is rotated around a stationary lathe. Turning is especially useful for machining parts that are symmetrical along a common rotational axis.

Turning plastic vs. metal

As with other plastic machining processes, turning generates heat. In order to prevent damage to a plastic part, rotation speed, tool selection, and coolants should all be considered carefully along with the thermal properties of the material.

Turning tips for plastic

- Turning operations require inserts with positive geometries and ground peripheries.
- Ground peripheries and polished top surfaces generally reduce material build-up on the insert, improving the attainable surface finish.
- A fine-grained C-2 carbide is often recommended for plastic turning operations.

Turning guid	elines (C-2,	carbide tool)
--------------	--------------	---------------

MATERIAL TYPES	DEPTH OF CUT (IN.)	SPEED (FT./MIN)	FEED (IN./TOOTH)
TIVAR® UHMW-PE, Nylatron® / Ertalon® PA6, Acetron® / Ertacetal® POM-H, Proteus® PP, Altron™ PC, Sultron® PSU & PPSU, Duratron® PEI, Ertalyte® PET-P	0.150	500-600 600-700	.010015 .004007
Ketron® PEEK	0.150 0.025	350-500 500-600	.010015 .003008
Fluorosint® PTFE	0.150 0.025	600-1000 600-700	.010016 .004007
Techtron® PPS	0.150 0.025	100-300 250-500	.010020 .005010
Duratron® PAI & PI	0.025	300-800	.004025
Duratron® PBI	0.025	150-225	.002006

Additional treatments

Additional treatments

Depending on the requirements for the part and machining process, coolants and/or annealing may be recommended in order to improve the finished results. This section covers the use of coolants and annealing, as applicable in machining plastic parts.

Coolants

What are coolants?

Coolants reduce the build-up of localized frictional heat, thus improving the machining results and extending the life of the tool. There are several types of coolants commonly used when machining engineering plastics, including pressurized air, dry ice, spray mists, and specially developed cooling agents.

When are cooling agents recommended?

Coolants are not necessary for most machining practices and most engineering plastics.

Annealing

What is annealing?

Annealing is a heat treatment process that improves the physical properties of a plastic, increasing its ductility and reducing its hardness to make the shape easier to machine. Annealing helps to relieve internal pressure from within the plastic, giving a machined part higher dimensional stability over time. The annealing process involves heating a plastic shape to half its melt temperature for a determined period and letting it cool at a specific rate.

Annealing pre-machining

All plastic stock shapes from the Advanced Materials division of Mitsubishi Chemical Group are annealed using a proprietary stress relieving cycle that minimizes any internal stresses that may have resulted from the manufacturing process. This ensures that the material will remain dimensionally stable during and after machining. However, we recommend coolants in the following cases:

- When drilling or parting-off plastics

 two processes that generate high frictional heat.
- When machining especially notch-sensitive materials, such as Ertalyte[®] PET-P, Duratron[®] PAI, Duratron[®] PBI, and glass- or carbon-reinforced products.
- When it is necessary to achieve optimum surface finishes and close tolerances.

Tips for selecting a coolant

- Spray mists and pressurized air are very effective means of cooling the cutting interface.
- General purpose petroleum-based cutting fluids, although suitable for many metals and plastics, may contribute to stress cracking of amorphous plastics such as Altron[™] PC, Sultron[®] PSU, Sultron[®] PPSU, and Duratron[®] U1000 PEI.
- Two flood coolants suitable for most plastics are Trim E190 and Tim Sol LC SF.

Annealing post-machining

Few machined plastic parts require annealing after machining to meet dimensional or performance requirements; however, postmachining annealing does have several benefits, including:

- Improved chemical resistance

 PC, PSU, and PEI materials
 can benefit from post-machining
 annealing to reduce stress crazing.
- Better flatness, tighter tolerances

 Extremely close-tolerance parts requiring precision flatness and nonsymmetrical contours sometimes require intermediate annealing between machining operations.
- High pressure velocity and low wear PAI – Extruded or injectionmolded Duratron® PAI parts requiring high pressure velocities or the lowest possible wear factor benefit from an additional cure after machining. This curing process

optimizes the wear properties. Only PAI benefits from such a cycle.

Tips for annealing plastics

- Improved flatness can be attained by rough machining, annealing, and finish machining with a very light cut.
- To reduce the potential for machined-in stress, review the fabrication guidelines for the specific material. Note that guidelines change as the material type changes.
- Ensure parts are fixtured to the necessary shape or flatness to prevent distortion. Do not unfix until the parts have completed the entire cycle and are cool to the touch.
- Finish machining to critical dimensions should be performed after annealing.
- Changes in heat-up and hold time may be possible if cross sections are thin.

Post-machining air annealing guidelines

MATERIAL TYPES	HEAT UP	HOLD	COOL DOWN	
Type 6 Nylons	4 hours to 300° F			Oil or Nitrogon
Type 6/6 Nylons, Ertalyte® PET-P	4 hours to 350° F			Oil or Nitrogen
Ertacetal® C POM-C / Acetron® GP POM-C	4 hours to 310° F			
Ertacetal® / Acetron® POM-H	4 hours to 320° F	30 minutes per		
Altron™ PC	4 hours to 275° F	1/4" thickness		Nitrogen or Air
Sultron® PSU & PPSU	4 hours to 330° F			
Duratron® PEI	4 hours to 390° F			
Techtron® PPS	4 hours to 350° F		50° F per hour	
Ketron® DEEK	4 hours to 300° F	60 minutes per		
	4 hours to 375° F 1/4'			
	4 hours to 300° F			Air
Duratron® PAI	4 hours to 420° F	rs to 420° F 1 day		
	4 hours to 500° F	3 to 10 days		
	4 hours to 300° F			
Duratron® PI	4 hours to 450° F	1/4" thickness		

Troubleshooting guidelines

Drilling troubleshooting

DIFFICULTY	COMMON CAUSE
Tapered hole	Incorrectly sharpened drill Insufficient clearance Feed too heavy
Burnt or melted surface	Wrong drill type Incorrectly sharpened drill Feed too light Dull drill Web too thick
Surface chipping	Feed too heavy Clearance too great Too much rake (thin web as described)
Chatter	Clearance too great Feed too light Drill overhang too great Too much rake (thin web as described)
Feed marks or spiral lines on inside diameter	Feed too heavy Drill not centered Drill ground not centered
Oversize holes	Drill ground not centered Web too thick Insufficient clearance Feed rate too heavy Point angle too great
Undersize holes	Dull drill Too much clearance Point angle too small
Holes not concentric	Feed too heavy Spindle speed too slow Drill enters next piece too far Cut-off tool leaves nib, deflecting drill Web too thick Drill speed too heavy at start Drill not mounted at center Drill not sharpened correctly
Burr at cut-off	Dull cut-off tool Drill does not pass completely through piece
Rapid dulling of drill	Feed too light Spindle speed too fast Insufficient lubrication from coolant

Turning and boring troubleshooting

DIFFICULTY	COMMON CAUSE
Melted surface	Too dull or heel rubbing Insufficient side clearance Feed rate too slow Spindle speed too fast
Rough finish	Feed too heavy Incorrect clearance angles Sharp point on tool (slight nose radius required) Tool not mounted at center
Burrs at edge of cut	No chamfer provided at sharp corners Dull tool Insufficient side clearance Lead angle not provided on tool (tool should ease out of cut gradually, not suddenly)
Cracking or chipping of corners	Too much positive rake on tool Tool not eased into cut (suddenly hits work) Dull tool Tool mounted below center Sharp point on tool (slight nose radius required)
Chatter	Too much nose radius on tool Tool not mounted solidly Material not supported properly Width of cut too wide (use two cuts)

Cutting off troubleshooting

DIFFICULTY	COMMON CAUSE
Melted surface	Dull tool Insufficient side clearance Insufficient coolant supply
Rough finish	Feed too heavy Tool improperly sharpened Cutting edge not honed
Spiral marks	Tool rubs during its retreat Burr on point of tool
Concave or convex surfaces	Point angle too great Tool not perpendicular to spindle Tool deflecting Feed too heavy Tool mounted from above or below center
Nibs or burrs at cut-off point	Point angle not great enough Dull tool Feed too heavy
Burrs on outside diameter	No chamber before cut-off diameter Dull tool

Appendix

Machinability ratings of advanced materials

Easy to machine	1	Ertacetal® C POM-C / Acetron® GP POM-C, Ertacetal® / Acetron® POM-H, Ertacetal® H-TF / Acetron® AF POM-H, Fluorosint® 500 PTFE, Fluorosint® 207 PTFE, Fluorosint® HPV PTFE, Nylatron® MC901 PA6 / Ertalon® 6PLA PA6, Nylatron® MC® 907 PA6, Nylatron® GS PA66, Nylatron® GSM PA6, Nylatron® 101 PA66 / Ertalon® 66 SA PA66
	2	Ertalyte® PET-P, Ertalyte® TX PET-P, Nylatron® GSM Blue PA6, Nylatron® NSM PA6, Altron™ PC 1000
	3	Fluorosint® MT-01 PTFE, Sultron® PSU, Sultron® PPSU, Techtron® PPS
	5	Duratron® T4203 PAI, Duratron® T4301 PAI, Ketron® 1000 PEEK, Techtron® PSBG PPS
	6	Duratron® T4501 PAI, Duratron® T4503 PAI, Ketron® HPV PEEK, Techtron® HPV PPS
	7	Duratron® U1000 PEI, Duratron® U2300 PEI, Ketron® GF30 PEEK
	8	Duratron® T5530 PAI
Challenging to machine	10	Duratron® CU60 PBI

Unit conversions

FRACTION (IN.)	DECIMAL (IN.)	мм	FRAC	TION (IN.)	TION (IN.) DECIMAL (IN.)
1/64	.0156	0.396	33/64		.5156
1/32	.0312	0.793	17/32		.5312
3/64	.0468	1.190	35/64		.5468
1/16	.0625	1.587	9/16		.5625
5/64	.0781	1.984	37/64		.5781
3/32	.0937	2.381	19/32		.5937
7/64	.1093	2.778	39/64		.6093
1/8	.125	3.175	5/8		.625
9/64	.1406	3.571	41/64		.6406
5/32	.1562	3.968	21/32		.6562
11/64	.1718	4.365	43/64		.6781
3/16	.1875	4.762	11/16		.6875
13/64	.2031	5.159	45/64		.7031
7/32	.2187	5.556	23/32		.7187
15/64	.2343	5.953	47/64		.7343
1/4	.250	6.350	3/4		.750
17/64	.2656	6.746	49/64		.7656
9/32	.2812	7.143	25/32		.7812
19/64	.2968	7.540	51/64		.7968
5/16	.3125	7.937	13/16		.8125
21/64	.3281	8.334	53/64		.8281
11/32	.3437	8.731	27/32		.8437
23/64	.3593	9.128	55/64		.8593
3/8	.375	9.525	7/8		.875
25/64	.3906	9.921	57/64		.8906
13/32	.4062	10.318	29/32		.9062
27/64	.4218	10.715	59/64		.9218
7/16	.4375	11.112	15/16		.9375
29/64	.4531	11.509	61/64		.9531
15/32	.4687	11.906	31/32		.9687
31/64	.4843	12.303	63/64		.9843
1/2	.500	12.700	1		1.000
				1	

Get in touch

North America Mitsubishi Chemical Advanced Materials Inc.

2120 Fairmont Avenue PO Box 14235 — Reading, PA 19612-4235 Tel: 800 366 0300 +1 610 320 6600

Europe Mitsubishi Chemical Advanced Materials NV

Galgenveldstraat 12 8700 Tielt, Belgium Tel: +32 051 42 35 11

Asia-Pacific Mitsubishi Chemical Advanced Materials Asia Pacific Ltd.

Unit 7B, 35/F, Cable TV Tower, 9 Hoi Shing Road, Tsuen Wan, Hong Kong Tel: +852 2470 26 83

Belgium | Brazil | China | France | Germany | Hong Kong | Hungary | India | Italy | Japan | Korea | Mexico Poland | South Africa | Switzerland | The Netherlands | United Kingdom | United States Of America

mcam.com

All statements, technical information and recommendations contained in this publication are presented in good faith and are, as a rule, based upon tests and such tests are believed to be reliable and practical field experience. The reader, however, is cautioned, that Mitsubishi Chemical Advanced Materials does not guarantee the accuracy or completeness of this information and it is the customer's responsibility to determine the suitability of Mitsubishi Chemical Advanced Materials' products in any given application. Acetron®, Nylatron®, and TIVAR® are a registered trademarks of the Mitsubishi Chemical Advanced Materials group of companies.

